
Why Momentum Really Works

Summary Notes by Max Guo

July 10, 2022

• Note: this is a tutorial article, so the format may be a little different than previous articles.

1 Information
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• Author: Gabriel Goh

2 Main Idea

The main idea of this tutorial is understanding the mechanism of momentum in gradient descent
through the example of the convex quadratic.

3 Gradient Descent

Consider the convex quadratic:

f(w) =
1

2
wTAw − bTw

=⇒ ∇f(w) = Aw − b

=⇒ wk+1 = wk − α(Awk − b)

where the last equation is the gradient descent update step. Assume A is symmetric and invertible, so the
solution is w∗ = A−1b. Now decompose A:

A = QΛQT ,

Q = [q1, . . . , qn]

Λ = diag(λ1, . . . , λn), λ1 ≤ · · · ≤ λn

Changing the basis, so xk = QT (wk − w∗):

wk − w∗ =

n∑
i=1

x0
i (1− αλi)

kqi

f(wk)− f(w∗) =

n∑
i=1

(1− αλi)
2kλi[x

0
i ]

2

Interpretation: Initial error in the Q-basis decomposed into n errors, which each decrease exponentially at
rate 1− αλi.
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Convergence: For convergence, we need |1 − αλi| < 1 ⇐⇒ 0 < αλi < 2 for each i; it suffices to look at
the smallest and largest is. The rate is determined by max{|1 − αλ1|, |1 − αλn|}. The optimal (minimal)
rate is when these are equal, e.g.

α =
2

λ1 + λn

rate =
λn/λ1 − 1

λn/λ1 + 1
=

κ− 1

κ+ 1

where κ is the condition number of A. The larger the condition number, the lower the optimal rate.

4 Momentum

The general momentum update:

zk+1 = βzk +∇f(wk)

wk+1 = wk − αzk+1

For ∇f(wk) = Awk − b and change of basis xk = Q(wk − w∗) and yk = Qzk, the update rule becomes:

yk+1
i = βyki + λix

k
i

xk+1
i = xk

i − αyk+1
i

or: (
yki
xk
i

)
= Rk

(
y0i
x0
i

)
where

R =

(
β λi

−αβ 1− αλi

)
For 2× 2 matrices, there is an elegant formula for Rk in terms of the eigenvalues of σ1 and σ2. After some
algebra, the convergence rate is max{|σ1|, |σ2|}, and the convergence criterion is that this quantity is < 1.
This gives us distinct regions for different convergence behavior, shown in fig. 1.

The range of step sizes is 0 < αλi < 2 + 2β, for 0 ≤ β < 1. The optimum parameters and convergence rate
turn out to be:

α =

(
2√

λ1 +
√
λn

)2

β =

(√
λn −

√
λ1√

λn +
√
λ1

)2

rate =

√
κ− 1√
κ+ 1

Practical Notes: if the problem’s conditioning is poor, optimal α is about twice in momentum than in
gradient descent. Moreover, β ≈ 1, so set β as high as possible then find the largest α that converges.

4.1 Example: Colorization Problem

Colorization Problem: On a graph G with edges E and distinguished set of vertices D, minimize

1

2

∑
i∈D

(wi − 1)2 +
1

2

∑
i,j∈E

(wi − wj)
2 (1)
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Figure 1: Momentum Dynamics

where the optimal solution is w⃗ = 1. Gradient descent results in every value being updated as a weighted
average of current value and its neighbors. In vectorized form, this problem is, minimize:

1

2
xTLGx+

1

2

∑
i∈D

xT eie
T
i x− eTi x (2)

where LG is the Laplacian matrix. The condition number of LG is dependent on the connectivity of the
graph. (e.g. long wiry graphs have poor conditioning).

4.2 Limitations

We can unroll the gradient descent loop and write the algorithm as:

wk+1 = w0 +

k∑
i

Γk
i∇f(wi)

where Γk
i are diagonal matrices. This describes gradient descent, gradient descent with momentum, Adam,

Adagrad, etc. If we consider the colorizable problem with the (really badly conditioned) graph that is just
a single path. Then it turns out momentum achieves the best we can do on this problem as n → ∞.

4.3 Stochastic Gradient Descent

Stochastic gradient descent with momentum has tradeoffs (e.g. increasing step size results in compounding
errors vs. increasinag rate of convergence), but shown to be competitive on NNs. Noise could be an implicit
regularizer?
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